x3x3x3x_5h3ll
— 53cur3 — 5h3ll_1d —
Linux vps-10654784.cedaps.org.br 3.10.0-1160.119.1.el7.x86_64 #1 SMP Tue Jun 4 14:43:51 UTC 2024 x86_64
  INFO SERVER : Apache PHP : 7.4.33
/lib64/python3.6/concurrent/futures/
162.240.100.168

 
[ NAME ] [ SIZE ] [ PERM ] [ DATE ] [ ACTN ]
+FILE +DIR
__pycache__ dir drwxr-xr-x 2024-10-07 16:37 R D
__init__.py 0.781 KB -rw-r--r-- 2018-12-23 21:37 R E G D
_base.py 20.737 KB -rw-r--r-- 2018-12-23 21:37 R E G D
process.py 20.012 KB -rw-r--r-- 2018-12-23 21:37 R E G D
thread.py 5.382 KB -rw-r--r-- 2018-12-23 21:37 R E G D
REQUEST EXIT
# Copyright 2009 Brian Quinlan. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. __author__ = 'Brian Quinlan (brian@sweetapp.com)' import collections import logging import threading import time FIRST_COMPLETED = 'FIRST_COMPLETED' FIRST_EXCEPTION = 'FIRST_EXCEPTION' ALL_COMPLETED = 'ALL_COMPLETED' _AS_COMPLETED = '_AS_COMPLETED' # Possible future states (for internal use by the futures package). PENDING = 'PENDING' RUNNING = 'RUNNING' # The future was cancelled by the user... CANCELLED = 'CANCELLED' # ...and _Waiter.add_cancelled() was called by a worker. CANCELLED_AND_NOTIFIED = 'CANCELLED_AND_NOTIFIED' FINISHED = 'FINISHED' _FUTURE_STATES = [ PENDING, RUNNING, CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED ] _STATE_TO_DESCRIPTION_MAP = { PENDING: "pending", RUNNING: "running", CANCELLED: "cancelled", CANCELLED_AND_NOTIFIED: "cancelled", FINISHED: "finished" } # Logger for internal use by the futures package. LOGGER = logging.getLogger("concurrent.futures") class Error(Exception): """Base class for all future-related exceptions.""" pass class CancelledError(Error): """The Future was cancelled.""" pass class TimeoutError(Error): """The operation exceeded the given deadline.""" pass class _Waiter(object): """Provides the event that wait() and as_completed() block on.""" def __init__(self): self.event = threading.Event() self.finished_futures = [] def add_result(self, future): self.finished_futures.append(future) def add_exception(self, future): self.finished_futures.append(future) def add_cancelled(self, future): self.finished_futures.append(future) class _AsCompletedWaiter(_Waiter): """Used by as_completed().""" def __init__(self): super(_AsCompletedWaiter, self).__init__() self.lock = threading.Lock() def add_result(self, future): with self.lock: super(_AsCompletedWaiter, self).add_result(future) self.event.set() def add_exception(self, future): with self.lock: super(_AsCompletedWaiter, self).add_exception(future) self.event.set() def add_cancelled(self, future): with self.lock: super(_AsCompletedWaiter, self).add_cancelled(future) self.event.set() class _FirstCompletedWaiter(_Waiter): """Used by wait(return_when=FIRST_COMPLETED).""" def add_result(self, future): super().add_result(future) self.event.set() def add_exception(self, future): super().add_exception(future) self.event.set() def add_cancelled(self, future): super().add_cancelled(future) self.event.set() class _AllCompletedWaiter(_Waiter): """Used by wait(return_when=FIRST_EXCEPTION and ALL_COMPLETED).""" def __init__(self, num_pending_calls, stop_on_exception): self.num_pending_calls = num_pending_calls self.stop_on_exception = stop_on_exception self.lock = threading.Lock() super().__init__() def _decrement_pending_calls(self): with self.lock: self.num_pending_calls -= 1 if not self.num_pending_calls: self.event.set() def add_result(self, future): super().add_result(future) self._decrement_pending_calls() def add_exception(self, future): super().add_exception(future) if self.stop_on_exception: self.event.set() else: self._decrement_pending_calls() def add_cancelled(self, future): super().add_cancelled(future) self._decrement_pending_calls() class _AcquireFutures(object): """A context manager that does an ordered acquire of Future conditions.""" def __init__(self, futures): self.futures = sorted(futures, key=id) def __enter__(self): for future in self.futures: future._condition.acquire() def __exit__(self, *args): for future in self.futures: future._condition.release() def _create_and_install_waiters(fs, return_when): if return_when == _AS_COMPLETED: waiter = _AsCompletedWaiter() elif return_when == FIRST_COMPLETED: waiter = _FirstCompletedWaiter() else: pending_count = sum( f._state not in [CANCELLED_AND_NOTIFIED, FINISHED] for f in fs) if return_when == FIRST_EXCEPTION: waiter = _AllCompletedWaiter(pending_count, stop_on_exception=True) elif return_when == ALL_COMPLETED: waiter = _AllCompletedWaiter(pending_count, stop_on_exception=False) else: raise ValueError("Invalid return condition: %r" % return_when) for f in fs: f._waiters.append(waiter) return waiter def _yield_finished_futures(fs, waiter, ref_collect): """ Iterate on the list *fs*, yielding finished futures one by one in reverse order. Before yielding a future, *waiter* is removed from its waiters and the future is removed from each set in the collection of sets *ref_collect*. The aim of this function is to avoid keeping stale references after the future is yielded and before the iterator resumes. """ while fs: f = fs[-1] for futures_set in ref_collect: futures_set.remove(f) with f._condition: f._waiters.remove(waiter) del f # Careful not to keep a reference to the popped value yield fs.pop() def as_completed(fs, timeout=None): """An iterator over the given futures that yields each as it completes. Args: fs: The sequence of Futures (possibly created by different Executors) to iterate over. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. Returns: An iterator that yields the given Futures as they complete (finished or cancelled). If any given Futures are duplicated, they will be returned once. Raises: TimeoutError: If the entire result iterator could not be generated before the given timeout. """ if timeout is not None: end_time = timeout + time.monotonic() fs = set(fs) total_futures = len(fs) with _AcquireFutures(fs): finished = set( f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) pending = fs - finished waiter = _create_and_install_waiters(fs, _AS_COMPLETED) finished = list(finished) try: yield from _yield_finished_futures(finished, waiter, ref_collect=(fs,)) while pending: if timeout is None: wait_timeout = None else: wait_timeout = end_time - time.monotonic() if wait_timeout < 0: raise TimeoutError( '%d (of %d) futures unfinished' % ( len(pending), total_futures)) waiter.event.wait(wait_timeout) with waiter.lock: finished = waiter.finished_futures waiter.finished_futures = [] waiter.event.clear() # reverse to keep finishing order finished.reverse() yield from _yield_finished_futures(finished, waiter, ref_collect=(fs, pending)) finally: # Remove waiter from unfinished futures for f in fs: with f._condition: f._waiters.remove(waiter) DoneAndNotDoneFutures = collections.namedtuple( 'DoneAndNotDoneFutures', 'done not_done') def wait(fs, timeout=None, return_when=ALL_COMPLETED): """Wait for the futures in the given sequence to complete. Args: fs: The sequence of Futures (possibly created by different Executors) to wait upon. timeout: The maximum number of seconds to wait. If None, then there is no limit on the wait time. return_when: Indicates when this function should return. The options are: FIRST_COMPLETED - Return when any future finishes or is cancelled. FIRST_EXCEPTION - Return when any future finishes by raising an exception. If no future raises an exception then it is equivalent to ALL_COMPLETED. ALL_COMPLETED - Return when all futures finish or are cancelled. Returns: A named 2-tuple of sets. The first set, named 'done', contains the futures that completed (is finished or cancelled) before the wait completed. The second set, named 'not_done', contains uncompleted futures. """ with _AcquireFutures(fs): done = set(f for f in fs if f._state in [CANCELLED_AND_NOTIFIED, FINISHED]) not_done = set(fs) - done if (return_when == FIRST_COMPLETED) and done: return DoneAndNotDoneFutures(done, not_done) elif (return_when == FIRST_EXCEPTION) and done: if any(f for f in done if not f.cancelled() and f.exception() is not None): return DoneAndNotDoneFutures(done, not_done) if len(done) == len(fs): return DoneAndNotDoneFutures(done, not_done) waiter = _create_and_install_waiters(fs, return_when) waiter.event.wait(timeout) for f in fs: with f._condition: f._waiters.remove(waiter) done.update(waiter.finished_futures) return DoneAndNotDoneFutures(done, set(fs) - done) class Future(object): """Represents the result of an asynchronous computation.""" def __init__(self): """Initializes the future. Should not be called by clients.""" self._condition = threading.Condition() self._state = PENDING self._result = None self._exception = None self._waiters = [] self._done_callbacks = [] def _invoke_callbacks(self): for callback in self._done_callbacks: try: callback(self) except Exception: LOGGER.exception('exception calling callback for %r', self) def __repr__(self): with self._condition: if self._state == FINISHED: if self._exception: return '<%s at %#x state=%s raised %s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state], self._exception.__class__.__name__) else: return '<%s at %#x state=%s returned %s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state], self._result.__class__.__name__) return '<%s at %#x state=%s>' % ( self.__class__.__name__, id(self), _STATE_TO_DESCRIPTION_MAP[self._state]) def cancel(self): """Cancel the future if possible. Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it is running or has already completed. """ with self._condition: if self._state in [RUNNING, FINISHED]: return False if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: return True self._state = CANCELLED self._condition.notify_all() self._invoke_callbacks() return True def cancelled(self): """Return True if the future was cancelled.""" with self._condition: return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED] def running(self): """Return True if the future is currently executing.""" with self._condition: return self._sta